Nitrogenase of Klebsiella pneumoniae. Distinction between proton-reducing and acetylene-reducing forms of the enzyme: effect of temperature and component protein ratio on substrate-reduction kinetics.

نویسندگان

  • R N Thorneley
  • R R Eady
چکیده

Non-linear rates of acetylene reduction and concomitant H2 evolution were observed for the nitrogenase of Klebsiella pneumoniae at 10 degrees C. A lag phase of 1-4 min, dependent on the ratio of Mo-Fe protein to Fe protein present, occurred before linear rates of acetylene reduction were achieved. A complementary burst phase for concomitant H2 evolution in the presence of acetylene was also observed. When the proton was the only reducible substrate present, linear rates of H2 evolution were observed. N2 was a poor substrate under these conditions. Similar lag and burst phases occurred at 30 degrees C, but only when a large molar excess of Mo-Fe protein with respect to Fe protein was present. The results at 10 degrees C show that the binding of acetylene to the enzyme stimulates electron flow, but that these electrons, which initially reduce protons, can only reduce acetylene after a lag phase that cannot be accommodated in the turnover time calculated under steady-state conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Klebsiella pneumoniae nitrogenase: pre-steady-state absorbance changes show that redox changes occur in the MoFe protein that depend on substrate and component protein ratio; a role for P-centres in reducing dinitrogen?

The pre-steady-state absorbance changes that occur during the first 0.6 s of reaction of the nitrogenase of Klebsiella pneumoniae can be simulated by associating redox changes with the different states of the MoFe protein described by our published kinetic model for nitrogenase [Lowe and Thorneley (1984) Biochem. J. 224, 877-886]. When the substrate is changed, from H+ to C2H2 (acetylene) or N2...

متن کامل

Nitrogenase of Klebsiella pneumoniae: electron nuclear double resonance (ENDOR) studies on the substrate reduction site.

Proton electron nuclear double resonance (ENDOR) spectra from the iron-molybdenum cofactor (FeMoco) of Klebsiella pneumoniae nitrogenase bound to the enzyme show that a wide variety of substrates and inhibitors, including dinitrogen, acetylene and cyanide, do not bind at or close to FeMoco in the dithionite-reduced state of the free MoFe protein, in agreement with our previous kinetic studies. ...

متن کامل

Diazotrophy and Nitrogenase Activity in the Archaebacterium Methanosarcina barkeri 227.

Nitrogen fixation (diazotrophy) has recently been demonstrated in several methanogenic archaebacteria. To compare the process in an archaebacterium with that in eubacteria, we examined the properties of diazotrophic growth and nitrogenase activity in Methanosarcina barkeri 227. Growth yields with methanol or acetate as a growth substrate were significantly lower in N(2)-grown cultures than in N...

متن کامل

Nitrogenase Activity Associated with Halodule wrightii Roots.

Nitrogen fixation (acetylene reduction) associated with roots of the seagrass Halodule wrightii was measured offshore near Beaufort and Moorhead City, N.C. Rates of acetylene reduction were higher in aerobic than in anaerobic assays and were linear for up to 5 days. The temperature range for acetylene reduction was 15 to 35 degrees C with a maximum activity at 35 degrees C. Nitrogenase activity...

متن کامل

In vitro synthesis of the iron-molybdenum cofactor of nitrogenase.

Molybdate- and ATP-dependent in vitro synthesis of the iron-molybdenum cofactor (FeMo-co) of nitrogenase requires the protein products of at least the nifB, nifN, and nifE genes. Extracts of FeMo-co-negative mutants of Klebsiella pneumoniae and Azotobacter vinelandii with lesions in different genes can be complemented for FeMo-co synthesis. Both K. pneumoniae and A. vinelandii dinitrogenase (co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 167 2  شماره 

صفحات  -

تاریخ انتشار 1977